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NOTATION

A Area of stiffener

a,b,c,d,fg,kmn Coefficients representing edge rotation and displacement
per unit edge or normal load

D Flexural rigidity - 'ghs
12( 1-_V2

)

E loung's modulus

It Force normal to axis of cone, at edge

fix Force normal to axis of cone

/ Thickness of cone

i i Moment of inertia of the cross section ef stiffener

S0 Derivative %ith respect to the argurrent of Bessel function
of first kind and of zero order

lM Niorent in a meridional plane, at edge

!M. Monent in a meridional plane !
M /Morrent in a transverse plane

N. Stress resultant in x.direction

N Stress resultant in 0-direction

N0  Derivative with respect to the argument of Bessel f:.nction
of secund kind and of zero order

p Pressure acting on the outer surface of the cone

Q. Shearing forces

R Distance from, axis of syrrretry

i Displacerrent in ir-direction

w Displacement in a-direction

W Displacement normal to axis of cone, taken positive inward

o 0Same, at edge of cone

X Coordinate taken along generator directod from tip of cone

z-coordinate of edge of conie

a Coordinate perpendicular to generator, directed inward

ae Angle between axis of cone and generator

V2 8



f Strain

0 Angle of totation of tangent to meridian due to deformation

Poisson's ratio

a Stress

VIM Asymptotic values of Schlicher functions



ABSTRACT

Approximate equations are developed for the equilibrium of complete coni.
cal shells, and the results are extended for the practical stress analysis of cone-
cylinder intersections reinforced with ring stiffeners. The effects of the approxi-
mation are explored to deter,-ine geometries for which the analysis is valid.

For several examples of cones of certain shapes, the approxirrate theory
gave results in good agreement with the relatively exact solution of Dubois.

The derived coefficients of edge displacem'ents and rotations provide a con-
venient irethod for analyzing the strength of pressure vessels which incorporate
conical com.ponents.

INTRODUCTION

Conical shells are frequently used in the pressure hulls of submarines; hence design
equations are required for the analysis of both the stability and equilibrium of the cone ele-
rents. Research directed toward the establishment of such criteria has been conducted at

the David Taylor Model Basin as a project assigned by the Bureau of S:ips and designated
by the Taylor Model Basin as PROJECT CYLICONR. 1 This report presents tne results of

one theoretical phase of the p-oblew, related to the analysis of stresses at a reinforced inter-
section of a cylindrical and a conical shell.

The differential equations of equilibrium for a conical shell were developed by Dubois, 2

and this solution in terms of his specially tabulated functions has been widely accepted.

These results were applied by Watts and Durrows 3 to the stress analysis of conical shells

and of cone-cylinder intersections, and their equations have found frequent application in de-

sign of naval vessels. However, the numerical operations which were required ari somewhat
* lengthy, especially if the intersection is reinforced.

As a consequence, Watts and Lang 4 recently published a tabulation of stresses devel-

oped near cone-cylinder intersections for a large number of cones of different shapes and

sizes. Practical application to specific cases requires considerable interpolation, and no

consideration is given to reinfcrcement at the joint.

* In efforts to simplify the theoretical analysis, approximate solutions were obtained by

lletdnyi5 who considered the cone equivalent to a see of tapered longitudinal beams on etas-

tic foundations. Wetterstrom 6 developed 4 different approximation by replacing the cone with

an "equivalent" cylinder. In both cases, the differential equations reserrnble the more exact

equation of Dubois, but the approximations ate not clearly defined and the errors represented

by omission of terms in the exact equation have not been evaluated. Consequen-ty, even

though these approximato solutions improved the facility of stress analysis, the validity of

the results remained unproved.

lReferences are listed on page 18.

.
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In this report, another set of approximate solutions is obtained for the discontinuity

stresses occurring near the intersections of closed conical shells with other elements C!

pressure vessels. The derivation makes use of Dubois' original equations for acone. Al-

though recognition is given to the practical needs of the engineer for generally simple expres-

sions, approximations and departures from rigor where required in this derivation are specifi-
cally noted and evaluated. Thus errors in solution or limitations in application are specified

in terms of a geometric parameter of the cone. With this analysis, many special cases of cone

intersections can be treated satisfactorily. The solutions are applied particularly to the case

of the cone-cylinder intersection reinforced with a ring stiffener, and equations are presented

for the design of pressure vessels.

The validity of these equations is currently being investigated at the Taylor Model

Basin by a comprehensive series of tests of pressurized conical shells using a wide range of

geometries. Early results show excellent agreement with the theory. Results will be pub-

lished in a subsequent report.

DEVELOPMENT AND SOLUTION OF APPROXIMATE DIFFERENTIAL EQUATION

Fror considerations of etuilibrium of the shell elemrent, Dubois established by stand-

ard elastic analysis an expression for the normal displacemrents of a conical shell in terms

of a fourth-order differential equation. With only external pressure acting on the shell, this
equation is expressed as:

2 12(1- V2 )w 9(1- V')X wzz= + 2 x wzzZ - 2,vv + - -- p + constant [1]

where z is the coordinate taken along tho generator from the tip of the cone,

w is the displacement in the a-direction, the subscripts indicating
differentiation with respect to x,

v is Poisson's ratio,

h is the thickness of the coae,

a is the angle between the axis of the cone and the generator,

E is Young's modulus, and

p is pressure acting on the outer surface of the cone; see Figure 1.

The stress resultants are:

M= D (W. + W [2]

w,, wP x tan a[4
N, DDtana 2 ,

'2

0i1i1i1I1I1I



Q, D(W - +'X-j [1

\ x

where the flexural rigidity D 12(1 [7]

4AMS is the moment in a meridional plane,

11f0 is the moment in a transverse plane

JAV is the stress resultant in the o-direction,

0is the stress resultant in the O-direction, and

Q. is the shearing force.

The membrane equations are obtained if, after multiplying Equation [1) by A3 , terms
containing the second or higher order in A are neglected in all equations. The particular into-
gr:d of the membrane equations so obtained, which is also a particular integral of Equat;on
[1], is as follows:

_ -

SWM~Mbv 4hE P X tan 2 a + constant

Since the constant in this equation represents translation parallel to the axis, it may be
neglected without affecting the elastic analysis.

The homogeneous form of Dubois' equation is:

x 2 w,1 1 + 2w o w,, -2tvz+ ' 0 [91

whce
ho/'1(1 - vs)

Dubois found solutious of this equation in terms of special functions and tabulated
these functions and their asymptotic forms as infinie series. Nevertheless, much elaborete
numerical computation is required for practical application.

From examination of the literature it was found that solutions in terms of known rather
than special or complex functions could be obtained if the second-order term of Equation [9]
were omitted; see Reference 5 and pages 406 to 420 of Reference 7. That is, the equation

xw +2'w,, + \
4 w - 011]

has as a solution

W [A J tri; + , JO Y- + 3 N,(±Yt' A .(± -_7 I [121
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where

t-2. [181

and 4o" and N0"indicate derivatives with respect to the argument of Bessel functions of the

first and second kind, both of zero order.
Them functions may be replaced by the following functions of Schleicher,8 which have e

boe tabulated and for which simple asymptotic formulas are known,

2, [j) -V 7 1)+_."Y

02 [) JV -I t) - J. (141

03 01(f) +- [N* (VIrs) - NO i )]c
[No ( €(1(+ f ) + N0  ( 4) 114d]

If the particular integral (8] is included, then 'be complete solution of Equation (9]
becomes

- c, 01, + c2 ,, (g) + Ca 0; (f) + C, ;(f) _ tan2 a [151
OE

Since this report deals only with closed cones, displacements at the tap may be assumed ad
to vanish. The functions 0 I(C) and 0,(f) are zero at the origin, but 0{*) and ar ) we not.

This requires that two of the constants of integration must be zero, 0 3 = C4 - 0 so that:

W= .V [c (f)+ C20; M] + lk-? tan 2 115b]

The successive derivatives of w are

w,= [C 1@ 0(2) -C 2, 01 ()] +- tan2 , 1e)

[P (e) - Cop; (?] + '7 2 [171

W 3 r is C 2 V11'

j~ 202(t)- 2 2( -t@ ( }

X a ( 4
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C1 and C are constants of integraticn to be evaiuated from boundary conditions at ihe edg, ge

of the cone. In computing these consecutive derivatives the following relationships Aere

employed:
7

The following expressions for the asymptotic form apply with sufficient accuracy when hen

4> 6 and these expressions are employed in the subsequent analysis:

01 (4 - 17CM P121a]

1P 1 (41- rlc 11.

I O E1b
0.2M - - n sin#y [21d]

where

[221

2r 
[23a

Yf -1 +  [23b]
11122b

EVALUATION OF THE APPROXIMATION

Since these solutions were tound to be so inuch simpler than those of Dubois, the

adoption of the approximate differential equation [11 appeared quite attractive. Consequently, ntly,
the validity of this approximation has been tested by computing the error introduced by ornis- a.

sion of the term(-2 w .)from the complete equation [91. As may be noted, terms in the equa- a-
tion are oscillatory Lnd are not in phase. Thus it was not fefsible to compute the error from

the ratio of the omitted terms to each of the terms retained because these remaining terms

periodically become zero.

Therefore the amplitude of the term omitted is compared with the amplitude of each of f

those retained. For example:

aI



C)

-wC 1 4I/4 @41) -C 2 w~ '- '24aI
2w1 ~-Cf4f(t 4f t (t)'i C (2 1P2 (4) -4/4 P;J 1

For e> 6, the maximums of 0(()), 0) &(e), and 02'are equal. If we note that C1

constant x (2, then

S- 2 (24b]

The relative magnitude of the omitted term is given by this quotient Lnd is limited to

3 percent, if f > 69.

It may be shown similarly that

I~wzI~t 2 c [25]2G z . -L <IX X X

so that the omitted second-order term is always much less than any of the remaining terms.

From the inequality (25], it would appear that the original differentia equation could be further
simplified, but since the solution is not correspondingly facilitated, the thirdorde" term has

been retained. For use in subsequent analysis, the following two inequalities were estab-

lished similarly:

max V or X << "w« I 126a]
lwz, - I

and

wa s~a 4 w.
- ,, or - < < wz. 2bw1 ..2 4'- 24 2 X26b]

CONSTANTS OF INTEGRATION FOR VARIOUS BOUNDARY CONDITIONS

With the verification of acceptably small error associated with the approximate differei.

tial equation, consideration is given to boundary conditions from which the constants of inte-
gration may be evaluated. Three cases have been selected from which other cases may be ob-

tained by a process of superposition. These boundary conditions are:

A. Edge of unloaded cone subject to uniformly distributed forces H perpendicular to axis.

B. Edge of unloaded cone subject to uniformly distributed moment M.

UP.
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C. Cone subject to nermal pressure, with edge simply supported uniformly in an axial
direction.

Case C may be treated by superposing the particular solution upon a solution for Case
A in which H does not vanish. These edge loads are shown in Figure 1.

These three conditions lead to the following constants of integration:

Boundary Condition C1  C 2

Case A
Sp =fi 0 _ a m o C o s a  s in o aH

11vz IX 0 a o -) y x H D Yo ×

2V z, 0

1 02 H 0 c 1  o kl

Case B

Y2r z M sin + 2M X2  cos 0 -

H ~Co Ifx, 0 D- oD 0 sin Y M

-M X -214 0 0) 7
C" 'P4+ 2/4 o 4'

IQ ~ ~~~ P 0In2aC

Case C

p~p Ii 2 si~ 1Pu~i xii, si apocN 1 2

Q = lf 2 z" P sin aoa C2  ,'Pz

The subscript 0 preceding or following a symbol designates the value of the function at

ANALYSIS OF STRESSES IN CONICAL SHELLS

In terms of the edge forces II, edge moments M, and pressure p, the displacement w per-

pendicular to a generator is



8

Succ ssiv coiatv s ma +e siP + /X -

2.2.

wM -~~ D 0 Hcosa+ P+l~-~M c ,'

D; 2 ?0 2_

i' ___ _ _+R _+

Vr2 _ _ P 2 t273

2 ~ r OE ai

Successive derivatives may be simi-

larly computed in term! of B, M, and p, and
,he stress resultants way be obtained from

these. From the inequalities of [26], it has

loigapExt xpressions fo h ein l eie of+ ¢

been considered Justified to adopt the fol-

loing appoimt expssios inur lie of Noe aue d o nvnto

Equations (2] to [6]. K U

-D (283

MO - v,- t [29] - N,

N, NiD tan a w. -- E tan a ta0]

No -D tana a X w. -pxtA [a (31]

Expressions for the meridional mo.

gient a ndtses e ol w s:erQ aete Figure I - Nomenclature and Sign Convention
give asfollws:Used for Cones

M --7 2Y[ 2X °H-cos a + V)l x sin2 a a

+(-7-0'"-4. 0,- 0 +;", W( 0e l"
-. k ( 2- -I')M] sin ~)-2rX,Mo ( 21-

Q, {[ 2 A2 X,0
2 p sin2a + 2 0 x~co a) [o (1 t

V2 4 t-4

-r2
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Stresses in the outer fiber of the shell may be simply computed from the following

t relations

0 Q, tan a P t 6 M,, [35]
h 2 h h 2

The circumferential stress vo may similarly be computed in terms of No and 41x. How.

ever, the computation of N involves a large number of terms, and resort is made to still an.

A other approximation.

It is known that

where R is the distance from the axis and i is the displacement perpendicular to the axis of

j the shell. From Hooke's law then:

Ea 0ft --- e [37]

where ra is taken as
ream" w6 cd + (I1--2) R'p [381

~ 8 -wEhcos a
Here w, is that part of the normal displacement it exclusive of the membrane component in

X2 , and R replaces r sin a. This relationship is derived as follows.

From consideration of components of displacement

gr-w cs a- u sinoa [391

The error introduced by neglecting the u displacements is now investigated. From the
relation

R
F Re-- kh (N,, - uNs) [40)

and formulas previously written for N and N.,

S sinc01tano D IX 2 W + -X1-V x p [411
-Eh 2

On the other hand from PFquation 11], with the w.. term omitted

sin ci tai [421'
v o aE h 4z z 2 W z

It can be shown that the terms within the brackets differ in the two expressions by a

small amount if ' is sufficiently large. However, the membrane terms appear in the ratio of
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(i - {,Independent of e, so that complete substitution of w cos a for ig would introduce

unacceptable error. Thus, Z., ;e approximate expression for 9, may be written as given in

Equation [38 wheie wb is that part of the normal displacement w exclusive of the membrane

component in a2 , and R replaces x sin a.

ANALYSIS OF STRESSES AT CONE INTERSECTIONS

COEFFICIENTS FOR EDGE DISPLACEMENTS AND ROTATIONS

With the available expressions, stresses in any cone can be computed for any given H,

M, and p.

If the cone is attached to any contiguous elastic structure, then 1i and M represent the

discontinuity shears and moments at the intersection and must 'ne computed n terms of the ge.

ometry and elastic constants of the two intersecting structures.

In general, this is accomplished by consideration of the compatibility of rotatiors and

displacements at the joint of the two elements. For analysis, the pertinent quantities required

at the open end of the cone are W0 and 00 . For use in subsec, aent computations, these rota.

tions and displacements were found to be

LU 2 tan 2 R R _ _

a -- W..v . - ..

M Eh, h tan a sint E" s

2O " U R

H E h2

0 U 2  R tanc0 3 R tana
C = -- 4--

P 2E h" 2E h cosa [431

d A U 1R in 2 [ U OR

M E cos a tan a sin aE h2

10 U sin 2 ci (1-/I.2 R 2

f--rOn- I-l i-- +
P E -cos a E h cos a

g __o" Y -_ UFR

h3 aj i - r

Imv
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where

u- £(1-.P [441

The rotations and displacements at the edge for combined loading re obtained by
superposition as

a.- aM+ bH + ep [45]

w 0 " d.M + gH + fp [463

Equations [43] thus represent important coefficients which are very convenient in the
analysis of any composite structure involving conical heads. They are especially useful in

problems concerning pressure vessels.0 Similar diplacement and rotation coefficients for

hemispherical shells, cylindrical shells, rings, and flat plates have been derived by athers

(see Reference 7, or Roark's "Formulas for Stress and Strain"). The expressions obtained for
the cone are found in the limiting cases, a * 0, to agree with the well-known results of[

Timoshenko (pages 393-406 of Reference 7) for a cylinder, provided the origin of the x-ooordi.

nate is transformed to the open end.

ANALYSIS WITH NORMAL PRESSURE LOADING
Two Intersecting Cones

These results are now applied to the general case of two closed cones with the same

base circle which are joined and subjected to external pressure; see Figure 2.

By requirements of compatibility and static equilibrium at the joint:

,- , l- , M , M " 2 [47]

where subscripts 1 and 2 denote the two shells. Using Equations [45] and [461 and defining

" a t. .c + d 2 , l. b l- b s , "7 ..C 1 + , ,2

a di+-d2, f f-fTz, 17 + [48]

*Although corresponding coeff.wient for the cone have been obtained by Watts end Lang4 using Dubois' analy.
sais. their expremions which involve be? and bei functions appear to be much moe difficult and time-consuming
to evaluete.
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H -H

M MI

Figure 2 - Free-Body Sketch for Intersection of Two Cones or of a Cone and Cylinder

the discontinuity forces I/ and moments M become

C d -ab

P (0

These values substituted in expressions 1271 and (331 to [38], completely describe
stresses, strains, and displacements in both cones.

Cone-Cylinder Intersection

The case of a cone-cylinder intersection is developed by considering a cylinder as a
limiting geometry of one of the cones, i.e., a02 0 degrees. Then

C 2

Furthermore, if the thickness of the shells is the same, A1  A2 then b -0

and

ORTI 1 ane 01 3/ h
M I -- ~ c~ [R Vc~z V ~ui2)c t [COS

a, 22r2 Y VoIc
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H- + 92 - 2(me ot+ieM + V 17 )p [2

Two Interseoting Cones with Reinforcement at the Joint

Consideration is now given to a stress analysis of the intersection of two cones when

the joint is reinforced by a ring stiffener; see

Figure 8.

If the ring stiffener is treated in the

limiting case as an inextensible membrane,

1 2

M = M2  [53]1"

HM H 4, A2o

and values may be obtained for M, HV, and 2

H2 as before. w..,. ,

It is also possible that such a rein- ", '"" '. 0
itircmentM, -Me-M'. 0

forcemeat exircises considerable restraint
to rotation at the joint. In the limiting case, Figure 3 - Free-Body Sketch for Reinforced
the cones can be considered as having com- Intersection of Two Cones

plete fixity at the edge, that is, for either

cone
0 0 [54

V= 0
then

ed - o R 3htana
ag- bd p 2tan p

2V12 (1- v 2) cos c+ r 2 /- - 1  [551

f Ib I C(I - I/ R I Ir It~ a

-g - bd V2j

12 P.~p cos a 2R [12( 1haa [-8 4 os0

4
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If a - 0, the cone becomes a cylinder with fixed edge and

M 
p 2)R h

/12(1 - v")

A similhr procedure may be used for studying an intersection reinforced with a finite
stiffener.* The directions assumed positive for the forces and moments are shown in Figure
3. The conditions for continuity and compatibility at the intersection become

W, = it-

01 =--6::

02 0

For static equilibrium at the intArsection, the following expressions are valid

H 2 + H2 = Il a

,11, - MI! = M3

If the dimensions of the cross section of the ,ing are small when compared with its
radius, the angle of rotation and the moment in the ring are related as shown by Timoshenko 9

'11: le 2 I (591
El

where I is the moment of inertia of the cross-sectional area of the ring with respect to a can-
troidal axis as shown in Figure 3.

It can easily be shown that

H, 2. [601

where A is the area of the stiffener. By taking

R
. = EA [61]I

k 2 El

aNote that in this treatment, the stiffener is assumed to have line contact at the lntersectlon.



It is found from Equations (081 to (60] that

R ?

W= (H +1) =- k1 (H + ) [821

and

S= E-l" M2 ) k2 (M -M 2 ) [63)

From Equations [431, (451, [46) [621. and [631, Equations 581 may be writte,:

diMI + m 1H - k H y1 , - f~p [64]

d,,M 2 - kH, + w, = - f2p [651

- k2 M 2 + b1H' - (661

-AM, + '120 2 + 62 12  -C2Pme 0 [071

.* where

l2 = 2 - ki it2 - a.,s-k, [681

The determinant of the coefficients for these equations may be writen:

dt 0 vl-ki

0 d2 -k m2  [69a1
I-k 2  bI  0

!-A' 2 0 b2

Replacing the first column by the constant terms

A 0 in, -k,
f 2 d2-t, -t [69b]
C1 -k2 1 0 ]
O n 2 0 b2
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From these

(701

M2# ilt and H 2 ' ay be computed similarly, and the stresses may be calculated b~y using Equa-

tions (27] and [331 to 138).
To illustrate the manner by which the stiffener modifies stresses developed at a

cylinder-conical intersection, a numerical example is pravided.

Let A1 - A2 - A -0.097 in.,k El.76 r. 30 degrees, Several different sized

stiffeners are chosen as follows:

Case AL,~ in.

a0.0396 0.323 x 10-4

b 0.0396 5.38 X 10-4

c 0.0792 10.323 X 10- 4

d - 0.323 X 10-4

e 0.0399

f -C

The resulting circumferential and longitudinal sirains are plotted in Figure 4. Of con-

siderable interest is the much greater influence which variation in area of stiffener exercises

on the stresses as compared with the influence of the variation in moment of inertia.

00

a 0323 036~a 02 09

CC 0.323 0.0792 c 0323 100799

0 1.0 2.0 3.0 4.0 5.0 0 1.0 2.0V~l.3 3.0 4J0 5.0
Distance fr.o. Intersection in inches Disaonce fron; intersctin in inches

Figure 4a - Longitudinal Strains Flgw.e 4b - Circumfrential Strain.

Figure 4 - Effect of Properties of Stiffener ou Straina Near Heinforcee5 Intersection
of Cylinder and Cone Subjected to Internal Pressure
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COMPARISON WITH DUBOIS' SOLUTION FOR SEVERAL NUMERICAL EXAMPLES

Because of the appoximations required in this analysis, a comparison has been made
with the results of Dubois' more exact equations fcr several numerical cases. These ae

listed in Table 1.
TABLE 1

C h 3/32 in. 2R 0 = 13.375 in.Case I
a - 30 deg. o - 56.2

H H p
Loading eoE 00E qoh "

Dubois 2429 8499 4730

Wenk-Taylor 2514 8774 4783

A=5 cm 2.= 150cm
Case II

=60 deg. 11.5

11 At
Loading

Dubois 94.6 9.48 9.48 1.84 4550 584

Wenk-Taylorl105.6 9.91 9.91 1.86 4935 566

The agreement is rather good, even for C = 11.5.

DISCUSSION AND CONCLUSIONS

As noted in the development, departures from rigor occurred:

A. With use of an approximate differential equation,

B. With use of approximate expressions for stress resultants,

C. - ith assumption that u displacements can be neglected when computing c for
bending effects.

D. With simplification of coefficients representing edge rotations and displacements.

E. With assumption that stiffener "ias a line instead of finite contact at the intersection.

Each of the approximations appears to introduce small errors which could be additive
rather than compensating. However, it can be noted that the expression for Q in this analy-

sis (from Equations [181 and [321) is identical with the Q,, from the exact solution by Dubois, 1

because of compensating errors of the approximations in the differential equation and in the

4' ,
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shearing force. Maximum errors in stress analyeis due to use of the approoimate theowy .re

estimated as a function of ,

Estimated Maximum
Error

percept

10 25

20 19

30 9

40 7
60 5

100 2

Obviously must exceed 6 to permit use of the asymptotic form of the solution of the
differential equations.

From these considerations, it is concluded that these csAts can be employed with sat-

isfactory accuracy for engineering calcu!ations on all but very flat or very thick cones. The

rotation and displacement coefficients given in Equations [43 1 may be conveniently used in
the analysis of pressure vessels in a manner -;imilar to that now popular for other components.

With the one numerical example of a reinforced cone-cylinder intersection, the area of

the stiffener wts shown to have a much greeter influence in reducing strains than did the mo-

ment of inertia. Although this is not shown to be generally true, these limited results suptest t

that the shape o; stiffener may not be significant.
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